Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate warming can induce a cost-of-living “squeeze” in ectotherms by increasing energetic expenditures while reducing foraging gains. We used biophysical models (validated by 2685 field observations) to test this hypothesis for 10 ecologically diverse lizards in African and Australian deserts. Historical warming (1950–2020) has been more intense in Africa than in Australia, translating to an energetic squeeze for African diurnal species. Although no net impact on Australian diurnal species was observed, warming generated an energetic “relief” (by increasing foraging time) for nocturnal species. Future warming impacts will be more severe in Africa than in Australia, requiring increased rates of food intake (+10% per hour active for diurnal species). The effects of climate warming on desert lizard energy budgets will thus be species-specific but potentially predictable.more » « lessFree, publicly-accessible full text available January 17, 2026
-
Abstract Most biodiversity dynamics and ecosystem processes on land take place in microclimates that are decoupled from the climate as measured by standardised weather stations in open, unshaded locations. As a result, microclimate monitoring is increasingly being integrated in many studies in ecology and evolution.Overviews of the protocols and measurement methods related to microclimate are needed, especially for those starting in the field and to achieve more generality and standardisation in microclimate studies.Here, we present 10 practical guidelines for ground‐based research of terrestrial microclimates, covering methods and best practices from initial conceptualisation of the study to data analyses.Our guidelines encompass the significance of microclimates; the specifics of what, where, when and how to measure them; the design of microclimate studies; and the optimal approaches for analysing and sharing data for future use and collaborations. The paper is structured as a chronological guide, leading the reader through each step necessary to conduct a comprehensive microclimate study. At the end, we also discuss further research avenues and development in this field.With these 10 guidelines for microclimate monitoring, we hope to stimulate and advance microclimate research in ecology and evolution, especially under the pressing need to account for buffering or amplifying abilities of contrasting microhabitats in the context of global climate change.more » « less
-
The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades—including a maturation of relevant theory and key concepts—but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an “Overview” talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology.more » « less
An official website of the United States government
